

#### 1) Halogen exchange reaction

#### 2) Nucleophilic Fluorination

#### **Deoxyfluorination**

Alcohol ⇒Monofluoride: HF, Fluoroalkyl Amino Reagent (FAR)

$$R_2N$$
  $\longrightarrow$   $R_2N$   $\longrightarrow$   $F$ 



#### **Difluorination**

Ketone⇒ Difluoride : HF, SF4 Derivatives

$$R_1 \longrightarrow R_2$$
 $R_1 \longrightarrow R_2$ 
 $R_1 \longrightarrow R_2$ 



#### 3) Electrophilic fluorination

High yield and Highly selective fluorination

$$R^1$$
  $R^2$ 

$$R^{1}$$
 $R^{2}$ 
 $F$ 
 $F$ 

$$R^1 \stackrel{O}{\downarrow} R^2$$

substrate

difluorinated product

yield (%)

selectivity (di : mono)

93

>99:1

80

>98:2



### 4) Diazo fluorination



#### 5) "PERFECT" (Direct fluorination)

PERFECT Process (PERFluorination of an Esterified Compound then Thermal elimination)

(F<sub>2</sub>) Process

$$RCH_2OCOR_F + F_2$$



PERFECT derivate list is here (2MB)





#### 6) Electrolytic fluorination

Selective fluorination for adamantine derivatives



Wide variety of fluoroadamantane are available in several hundreds kg scale.

