Notice

- 1) The statements and data given in this publication are believed to be accurate. They are presented without any guarantee or warranty, express or implied. Statements or suggestions regarding the use of these products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that all safety measures are indicated,
- 2) Please refer to the MSDS (Material Safety Data Sheet) for safety and details.
- 3) This product is not designed for use in the implantation of the human body or for medical applications that come in contact with body fluid or body tissues, ASAHI GLASS CO., LTD. carries out no test as to the fitness of the product for any medical applications.
- 4) The contents are subject to change without prior notice.

AGC Chemicals, Fluoropolymers Group ASAHI GLASS CO., LTD.

Shin-Marunouchi Bldg.,1-5-1 Marunouchi Chiyoda-ku,Tokyo 100-8405 Japan Phone: +81-3-3218-5875 Facsimile: +81-3-3218-7856 http://www.agc.com/
Fluon®Website http://www.fluon.jp/

AGC Chemicals Americas, Inc.

55 East Uwchlan Ave. Suite 201, Exton, PA 19341 USA Phone: +1-610-423-4300 Facsimile: +1-610-423-4301

AGC Chemicals Europe, Ltd.PO Box 4, Thornton Cleveleys, Lancashire, FY5 4QD UK Phone: +44-1253-861957 Facsimile: +44-1253-861950

AGC Asia Pacific Pte. Ltd.

460 Alexandra Road #30-02, PSA Building ,119963 Singapore Phone: +65-6273-5656 Facsimile: +65-6276-8783

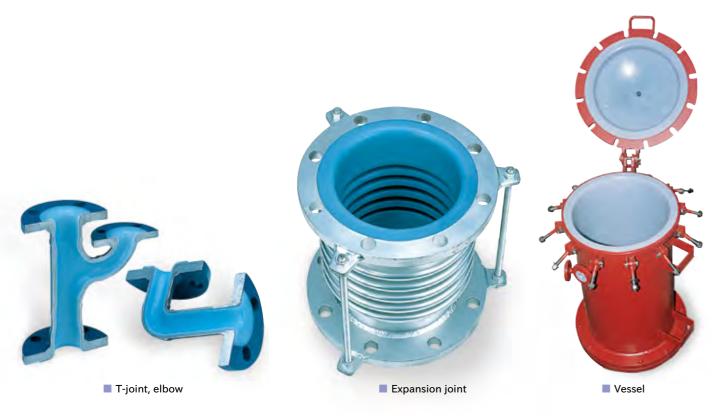
AGC Chemicals Trading (Shanghai) Co., Ltd.

Room 2701-2705, Metro Plaza, 555 Lou Shan Guan Road, Chang Ning Ward, Shanghai, 200051 China Phone: +86-21-6386-2211 Facsimile: +86-21-6386-5377

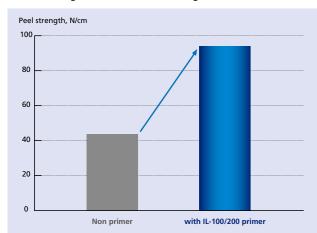
AGC Chemicals

LINING & COATING POWDER

Fluon®ETFE Powder Coating & Lining


Fluon®ETFE is a thermoplastic fluoropolymer, a copolymer of tetrafluoroethylene and ethylene, developed by Asahi Glass Co., Ltd.. Fluon®ETFE is widely used in various industrial applications for its outstanding processability in addition to excellent chemical resistance and electrical properties associated with fluoropolymers generally, such as PTFE, PFA and FEP.

Various anti-corrosion equipments are made by Fluon®ETFE Powder by various moulding methods such as electrostatic powder coating, rotolining, fluid bed, etc. Seamless coating is easily available in each process.



Chemical Resistance of Fluon®ETFE

Fluon®ETFE is stable against most chemicals, including acids, alkalis and solvents, across a wide temperature and at various pressures. ETFE has the benefit of outstanding processability enabling various shapes and sizes, and thick coatings of over Imm to be achieved. The IL primer series increase Fluon®ETFE adhesive properties, thus increasing the potential applications of Fluon®ETFE.

Peel strength of Fluon®ETFE coating

Grade : TL-081, 1mm thickness

Substrate: SS400

 $\textbf{Coating process:} \ \text{sand blasting} \ > \ \text{pre-heating} \ > \ \text{electrostatic}$

powder coating > baking

Measurement condition: 90°C peeling at 50 mm/min speed

■ Chemical resistance of Fluon®ETFE Rotomoulding

Catagory	Chemical	Concentration	Anticorrosive temperature(
Category	Chemical	25	50	75	100	110	120	
		25	•	•	•	•	A	
	acid	50	•	•	•	•	A	
	dela	80	•		•	•	•	
		95	•		•	•	•	
	hydrochloric acid	5	•	•	•			
	Tryur ocinionic uciu	35	•	•	•			
	nitric acid	5	•	•				
inorganic acids	marie dela	60	•					
	phosphoric acid	20	•	•	•	•		
	priospriorie deld	85	•		•	•		
	chromic acid	10	•	•	•			
	Cilioniic aciu	50	•	•	•			
	hydrofluoric acid	10	•	•				
	Trydrolluone acid	50	•	•				
	hydrobromic acid	40	•	•	A			
	formic acid	100	•	•	•			
		10	•	•	•			
	acetic acid	50	•	•	•	A		
		96	•	•	•	A		
	abla va a salia a si d	10	•	•	•			
organic acids	chloroacelic acid	50	•	•	•			
acias	lactic acid	100	•	•	•	•	A	
	benzoic acid	3	•					
	citric acid	40	•	•				
	oxalic acid	20	•	•	•	A		
	benzensulfinic acid	100	•	•	•	•	A	
	potassium hydroxide	25	•	•	•	•	A	
		10	•	•	•			
	sodium hydroxide	25	•	•	•	•	A	
alkalis		48	•	•	•	•	A	
		10	•	•	•	A		
	ammonium hydroxide	25	•	•	•	A		
	calcium hypochlorite	10	•	•	•	A		
	sodium hypochlorite	6	•	•	•	A		
bleaching agents	chlorine dioxide	15	•	•	A			
	hydrogen peroxide	35	•					
	chlorine water	saturated	•	•	A			
gases	chlorine(Dry)	_	•	•	•	•		
	chlorine(Wet)	-	•	•	A			
	bromine	-	•	A				
	sulphurous anhydride(Dry)	-	•	•	•	•	A	
	sulphurous anhydride(Wet)	-	•	•	•	•	A	
	sulfuric anhydride	_	•	•	A			

Category		Chemical	Concentration (%)	Ant 25	icorro	sive t	empe 100	rature 110	e(°C) 120
		nitrous oxide	_	•	•				
gases		carbon dioxide	_	•	•	•		A	
		carbon monoxide	_	•	•	•	•	A	
		n-amyl alcohol	100	•	•	•	•	A	
		benzil alcohol	100	•	•	•	•	A	
	alcohols	butyl alcohol	100	•		•			
		ethyl alcohol	100	•			A		
		methyl alcohol	100	•	•		A		
		ethyl ether	100	•	•		A		
		butyl ether	100	•				A	
	ethers	phenyl ether	100	•	•			A	
		dioxane	100	•	•	A			
		tetrahydrofuran	100	•	•		_		
		acetone	100	•	•	•	A		
	ketones	methyl ethyl ketone	100	•	•	•	A		
		diethyl ketone	100	•	•		A		
		ethyl acetate	100	•	•	•	A		
	esters	methyl palmitate	100	•	•	•		A	
		methylene chloride	100	•	•	•	A		
	halogens	chloroform	100	•	•	•	A		
SS		carbon tetrachloride	100	•	•	•	A		
onuc		ethylene chloride	100	•	•	•			
dmo		tetrachloroethylene	100	•	•		A		
aromatic compounds		ethylene chlorohydrine	100	•	•		A		
oma		chlorobenzene	100	•	•		A		
ar		acetaldehyde	100	•	•		A		
		benzene	100	•	•		A		
		toluol	100	•	•		A		
		xylene	100	•	•		•	A	
		nitrobenzene	100	•			A		
		aniline	100	•			A		
		acrylonitrile	100	•	•		A		
		dimethyl phthalate	100	•	•			A	
	-41	ethylene glycol	100	•	•			A	
	others	furfural	100	•	•			A	
		pyridine	100	•					
		hexane	100	•	•	•	A		
		triethanolamine	100	•	•	•			
		naphthalene	100	•	•	•	•	A	
		phenol	10	•	•	•	A		
		gasoline	100	•	•	•	•	A	
		kerosene	100	•	•	•	•	A	
		naphtha	100	•	•	•	•	A	

^{*}The data in this table to the 0.6 to 0.8mm thick lining of Fluon®ETFE over a carbon steel plate.

these data were obtained in our laboratory and are given for reference.

^{*}The mark ● represents no alteration. The mark ▲ means slight alteration, but effective lining in use.

^{*}These data were obtained in our laboratory and are given for reference.

Typical Application Methods of Fluon®ETFE Powder

Electrostatic Coating

Powder grades of ETFE are electrostatically charged then sprayed onto the substrate and subsequently baked in an oven.

Rotolining

Powder grades of ETFE are placed inside a double axial rotating container and subjected to a heating and cooling cycle. Stand-alone tanks may also be coated using an appropriate release agent.

Fluidised Bed Coating

The substrate is heated and dipped into a container of fluidised powder.

■ Fluon®ETFE Powder Grade List

		Application												Colour	Application			
Grade	Coating						Lining					Characteristics	Thickness µm		Electrostatic	Data lining	Fluidised	Mean particle size µm
	Agitator	Grating	Parts	Hopper	Duct	Pipe	Tank	Pump	Tanker	Bottle	Vessel		· ·		Coating	Roto-lining	Bed Coating	
Z-8820X	•	•	•	•	•							normal use, non-stick	50 ~ 80	clear to white	•			10 ~ 40
Z-882NX	•	•	•	•	•							normal use, non-stick, high heat resistance	50 ~ 80	clear to white	•			10 ~ 40
Z-885C	•	•	•	•	•							thick coating, non-stick, high heat resistance	50 ~ 400	clear to white	•		•	40 ~ 80
TL-081	•	•	•	•	•							anti-cracking, high fluidity, high heat resistance	~ 1000	clear to white	•			80 ~ 120
ZL-522F						•	•	•	•			high erosion resistance	more than 2000	clear to white		•		100 ~ 140
TL-580						•	•	•		•	•	anti-cracking, high fluidity	more than 2000	clear to white		•		230 ~ 310
TL-581						•	•	•				anti-cracking, high fluidity, high heat resistance	more than 2000	clear to white		•		230 ~ 310
TL-584						•	•	•				anti-cracking, high fluidity, high heat resistance	more than 2000	clear to white		•		230 ~ 310
ZL-520N	•	•	•	•	•							CF 20wt%, thickness, low-contraction	~ 1000	black	•		•	40 ~ 80
ZL-521N	•	•	•	•	•							CF 5wt%, intermediate coat for ZL-520N, low-contraction	50 ~ 150	black	•		•	40 ~ 80
LM-2300N						•	•	•				top coat (smooth surface)	more than 2000	clear to white		•		300 ~ 500
CP-801XGN	•	•	•	•	•							base coat	50 ~ 100	green	•			80 ~ 120

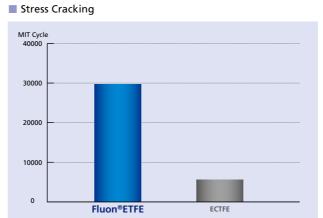
■ Fluon®ETFE Primer List (for High Adhesion Strength)

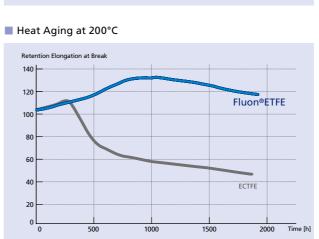
Grade	Characteristics	Colour	Application	
			11	
IL-100	Liquid Primer (water based)	clear	spray	
IL-200	Liquid Primer (alcohol based)	clear	spray	

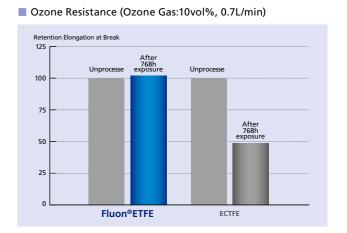
5

Fluon®ETFE for FM Standard Duct Works

FM Standard & FM Duct

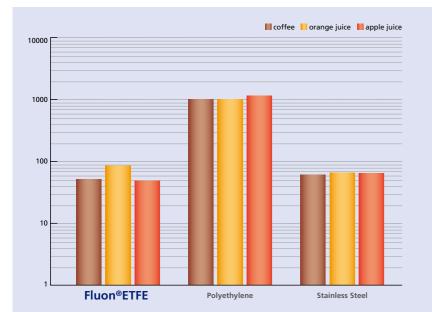

FM Global, a well known mutual insurance organization, provides an approval standard for fume exhaust ducts (Class 4922) regarding controlling the spread of a fire. Fluon®ETFE has excellent inflammability and is widely adopted as the material of choice for FM duct material.





Fluon®ETFE has excellent stress crack resistance, thermal stability and ozone resistance.

8


Fluon®ETFE Powder for Food Contact Use

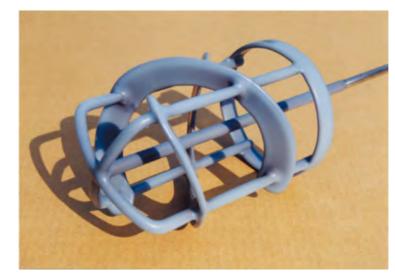
Fluon®ETFE has excellent anti-stick properties and significantly reduced odour transfer index compared to other polymer materials.

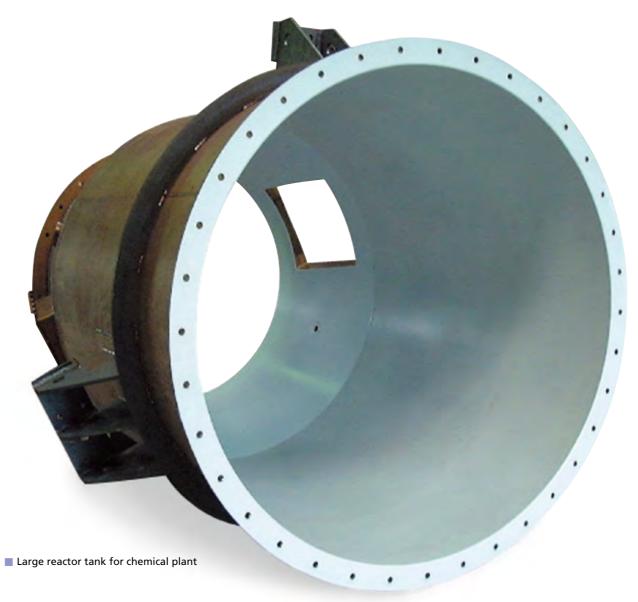
Ideal for Food Contact Applications

- Fluon®ETFE meets various food contact standards
- Fluon®ETFE is stable against most chemicals across a wide temperature range and contains no plasticizers
- Fluon®ETFE complies with Japanese food contact standard 1959-370 MHLW
- Fluon®ETFE has FDA compliance and is No. 481 in the Food Contact Notification List
- * See MSDS for detailed information.

Odour Transfer Index

Measurement Method : Shimazu FF-2A after 80°C x 24h immersion and 30min flushing


■ Water Repellency of Fluon®ETFE


Water Contact Angle

Fluon®ETFE	96°
Polyethylene	89°
Polyethylene chloride	87°
Polymethyl methacrylate	80°
Nylon 66	70°

stirrer blades

 $_{
m 9}$